

Drill 4

Answers can be found in Part IV.

a. How many units do you count up (rise) to get from point B to point A ?

b. How many units must you count over (run) to get from point A to point B ?

c. What is the slope of the line above? _____

(Remember, the line is going down to the right, so it must have a negative slope.)

d. What would be the slope of a line parallel to AB ? _____

e. What would be the slope of a line perpendicular to AB ? _____

f. What is the distance from point A to point B ? _____

g. What is the midpoint of line segment AB ? _____

2

If $y = 6x + 3$ and $y = cx + 3$ are the equations of perpendicular lines, then what is the value of c ?

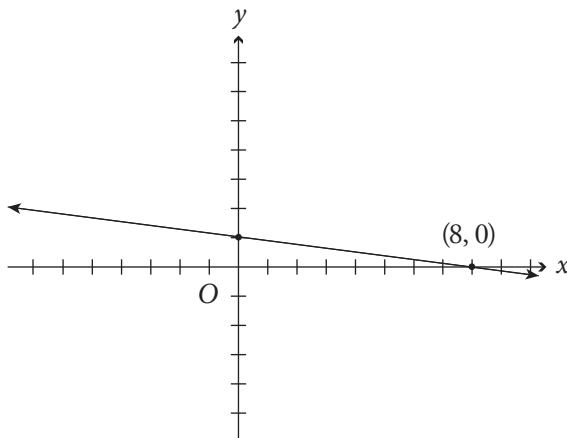
A) -6

B) $-\frac{1}{6}$

C) $\frac{1}{6}$

D) 6

3


What is the y -intercept of the line with equation $2x + 3y = 12$?

A) 4

B) 3

C) 2

D) $\frac{1}{4}$

7

Which of the following could be the equation of the line in the graph above?

A) $2y - x = -8$

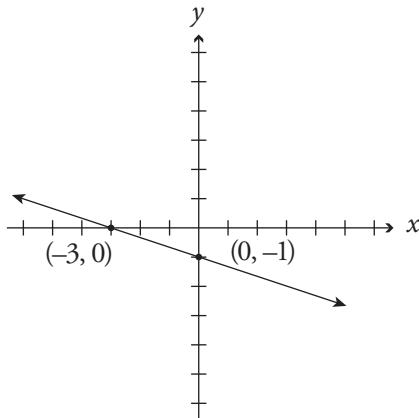
B) $4y + x = -8$

C) $8y - 3x = 8$

D) $8y + x = 8$

17

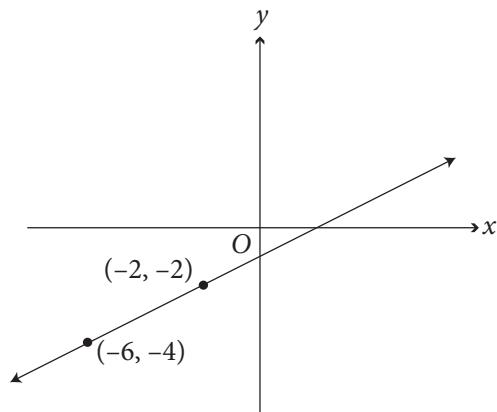
$$y = 4x^2 - 6x + 4$$


$$y = 2x + 4$$

The equations above intersect at two points. What is the product of the y -coordinates of the two points of intersection?

.	1	1	.
.	0	0	0
1	1	1	1
2	2	2	2
3	3	3	3
4	4	4	4
5	5	5	5
6	6	6	6
7	7	7	7
8	8	8	8
9	9	9	9

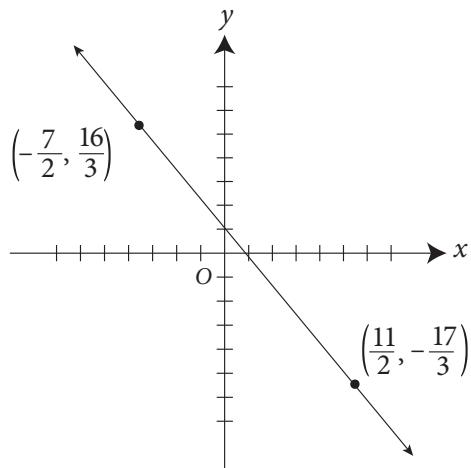
6



Line l is shown in the graph above. If line m is parallel to line l , which of the following could be the equation of line m ?

- A) $y = -3x - 1$
- B) $y = -\frac{1}{3}x + 2$
- C) $y = \frac{1}{3}x - 3$
- D) $y = 3x + 2$

12



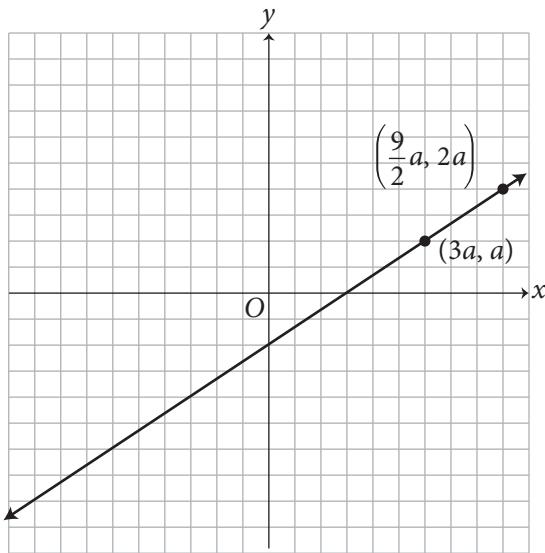
What is the x -intercept of the line in the graph above?

- A) -1
- B) 0
- C) 1
- D) 2

14

Which of the following is the slope of the line in the graph above?

A) $-\frac{11}{6}$


B) $-\frac{11}{9}$

C) $-\frac{9}{8}$

D) $-\frac{9}{11}$

15

The graph of a line is shown in the xy -plane above. It contains the points $(3a, a)$ and $\left(\frac{9}{2}a, 2a\right)$, where a is a positive constant. Which of the following could be the equation of this line?

A) $y = \frac{2}{3}x - 2$

B) $y = \frac{2}{3}x + 2$

C) $y = \frac{4}{3}x - 2$

D) $y = \frac{3}{2}x - 2$